
Meetup Miner

Measuring Event Interestingness on Meetup

Maximilian Grundke, Jaeyoon Jung, Jan Philipp Sachse, Georg Wiese

Hasso Plattner Institute, Potsdam, Germany

Abstract Quantifying event interestingness in Event-Based Social Net-
works is crucial to filter for compelling events. However, because inter-
estingness is inherently subjective, it is impossible to universally define.
We propose a set of features based on the event description as well as
the RSVP history of related events that indicate interesting events. Fur-
thermore, we introduce a method to combine them to an interestingness
score that is derived from user-specified preferences. We provide details
of our implementation for Meetup1 events and deliver a functioning web
application prototype as a proof of concept.

1 Introduction

In recent years, social networks have become an important part of most people’s
lifes. Widely known networks such as Facebook or Twitter count millions of users,
host a huge amount of interesting data and are subject to ongoing research.
Additionally, social networks with a more specific target audience have emerged,
one of which is Meetup.

Meetup is a so-called “Event Based Social Network” (EBSN), which allows
users to gather in groups online and create and manage events of any kind.
It has about 20 million members and about 500,000 Meetups take place every
month all over the world [4]. EBSNs are centered around interests of people
and their demand to meet other like-minded persons face-to-face. Therefore, it
is not the online social interaction between friends that is the most important
part, but the possibility to create “offline” spaces (“Meetups”) for people who
share common interests. As Meetup becomes more and more popular around the
world, more events are created and it becomes harder to find interesting ones.
The platform provides the option to filter events by location, topic, number
of members, and date of creation. Furthermore, users have the possibility to
connect to other Social Networks and find meetups their friends are attending.
Using events attended in the past, interests given at registration and real-world
1 Meetup. http://www.meetup.com/

friends, Meetup also has a “Recommended Events” section, which defaults to
random events, if the user has not provided details and never attended an event
before. This is commonly known as a cold-start problem in recommendation
systems [3].

In order to present users more interesting events without requiring historical
information about users, it is important to know what “interesting” means for
them. Instead of making assumptions, our work focuses on giving users more
tools to define “interestingness” themselves. We crawled Meetup for this purpose
and developed five experimental features, based on the data that is already
available on the Meetup platform. The concepts of the features and the crawler
are explained in Section 3 on the facing page and details of the implementation
can be found in Section 4 on page 7.

2 Related Work

In recent years, EBSNs have increasingly gained focus of the research community.
Many different approaches have been taken, some of which are covered in this
chapter.

In 2012 Liu et. al. [3] described event-based Social Networks as “a co-existence
of both online and offline interactions”. By analyzing crawled data from Meetup
and Plancast2, some unique properties of EBSNs have been collected. For ex-
ample, the authors state, that “events present very regular temporal and spatial
patterns.” Furthermore, some problems with event recommendation have been
identified, including the cold-start problem in event participation prediction.

Similar observations were made by de Macedo and Marinho in [1], who con-
clude that “[EBSNs are] quite different from typical recommendation domains,
since there is an intrinsic new item problem [...] and scarce collaborative infor-
mation”. Their work includes in-depth analyses of RSVPs, event lifetime, and
the effectiveness of traditional recommendation systems, such as collaborative
filtering. The authors propose to use past events, group memberships, and event
metadata (such as descriptions and tags) to predict the attendance of future
events.

In [6], Xu et. al. examined the influence of the event size on promoting new
social connections between users. The data was acquired from Douban3, a Chi-
nese EBSN similar to Meetup. The authors conclude, that small events are more
suitable to make new connections. It is worth noting, that qualitative interviews
concerning the topic showed a great “need to understand users’ goals in the
design of event spaces, sizes, and structures”.
2 Plancast. http://plancast.com/
3 Douban. http://douban.com

2

3 Concept

In order to allow users to find more interesting events, we propose several tools.
We developed the following five measures to filter events by, four of them being
directly related to the event and the people that are going to be there.

– Number of People The number of people that are probably going to go
to the event. This is an important feature, as the event size also influences
the kind of atmosphere to expect (compare [6]).

– Trend The slope of the trendline describing the number of people going to
events of a group (i.e., whether there are going to be more, less or equally
as many people at future events).

– Expected Member Loyalty A measure that describes how many members
are going to be at the event that have been at previous similar events of this
group.

– Formality A measure that describes the level of an event being formal
(events on Meetup range from partying and drinking beer together to having
a workshop with a regulated schedule and timed speakers).

– Compactness Allows filtering by event descriptions that feature more rel-
evant words in a shorter text.

Three of our features are based on RSVPs, as they are a very good source of
information about the people that represent an event. Unfortunately, there are
few RSVPs given per event on average. Meetup additionally features several big
groups containing events with over 100 RSVPs, which results in many events
having zero or only one response online (see also [1] and [4]). The two remaining
features are based on the description of events and use machine learning and
the computation of a TF-IDF value for their prediction. The concepts of these
approaches are discussed in detail in the following subsections.

For the sake of precomputing values of upcoming events we need access to as
much data of past events as quickly as possible. Therefore an offline dataset is
necessary for the computations based on RSVPs and also for the training of the
machine learning algorithm. We wrote a crawler that downloads the necessary
data for a given city from Meetup and saves it to a database. The architecture
and function of the crawler is explained in Section 4.1 on page 7. We initially
downloaded available information of groups from big cities in America and Eu-
rope, such as New York, San Francisco, Chicago, London and Berlin. Based on
these groups we then downloaded information about events, members that went
there, their profiles and more. In the end we used the data crawled from Chicago
for our development and testing purposes, as the city was small enough to pre-
dict all values for the upcoming events and big enough to evaluate the quality
of our approach.

3

3.1 Event Neighborhood

Some of the features that we compute for upcoming events are predicted from
past events of the same group. Considering, for example, the size of the upcoming
event eupcoming: We predict it by computing a weighted average over the event
sizes of past events Epast = {e1, e2, ..., en}, using weights w(1), w(2), ..., w(n) with∑
w(i) = 1:

size(eupcoming) :=

n∑
i=1

w(i) · size(ei) (1)

The general problem we faced with this approach was to find appropriate weights.
Phrased differently, we try to determine a measure of how much information a
particular past event gives us about an upcoming event. The result is what we call
the “Event Neighborhood”, which will be described in the following paragraphs.

There are three components from which a particular weight w(i) is computed:

– The time weight w(i)
t : This should account for the intuition that events that

are close by should be weighted higher than events that are far in the past. It
is modeled as a function of the time difference ∆t between ei and eupcoming.
It falls exponentially and is parametrized by the half time Thalf :

w
(i)
t := 2

− ∆t
Thalf (2)

– Similarity weight w(i)
s : This should account for the fact that some groups

host different types of events. It is a measure that quantifies the similarity
between eupcoming and ei.

– boost: As a small optimization, we included a boost if the two events were
created at the same time. In the case of Meetup, this indicates that they
were created in one bulk. Therefore, the probability for the two events being
of the same type is increased.

To compute w(i), we multiply w(i)
t and w(i)

s , add the boost and make sure that
the result never exceeds 1:

w(i) := min(1.0, w
(i)
t · w(i)

s + boost) (3)

An example is visualized in Figure 1 on the next page. As we are weighting all
past events of a group (instead of just using events of the same kind) and using
them in our calculation, we possibly lose some accuracy, but gain advantages on
the cold-start problem, as described in [3].

4

e 1 (
ty

pe
 A

)

Feature

Time weight w(i)
t

Similarity weight w(i)
s

Combined weight w(i)

time

e 2 (
ty

pe
 B

)

e 3 (
ty

pe
 A

)

e 4 (
ty

pe
 B

)

e 5 (
ty

pe
 A

)

e 6 (
ty

pe
 B

)

e 7 (
ty

pe
 A

)

Figure 1: Illustration of the time weight w
(i)
t and similarity weight w

(i)
s components

of the Event Neighborhood weight w(i). eupcoming, which is not included here, is in
the future and of event type B. Time weight w(i)

t is highest for the latest event e7 and
falls exponentially with half time Thalf according to Equation (2) on the facing page.
Similarity weight w(i)

s is high for all events of type B and low for all events of type A.
The combination of all weight components according to Equation (3) on the preceding
page results in e6 having the highest total weight in this example.

3.2 Text-based Features

Every event has a description that contains the basic information such as what is
done during the event, what is expected from participating members, etc. Based
on the text analysis of descriptions, we introduce two text-based features, for-
mality and compactness, which we consider useful for finding events of interest.

Formality Formality literally refers to the level of an event being formal and
is therefore one of the main factors that decides the characteristics of an event.
Events on Meetup have a wide range of formality from being highly informal to
being highly formal and in general, there are more informal events than formal
ones.

Formal events generally have a predefined event schedule, which may contain
one or multiple presentations by employees from the industry. Formal events can
also specify a dress code and are more likely to be sponsored by one or multiple
organizations. In addition, it is likely that they deal with technical topics, such
as big data or entrepreneurship. Most of the time, talks are followed by serious
discussions, which leads to the events being impersonal, i.e., it is not the person
but what they do that happens to be important.

5

Informal events are more casual and aimed at making new friends and having
fun. It is not common that they have any specific dress code. Informal events
are also likely to come with food, music and drinks during the events.

Unlike other attributes of events such as location and RSVPs, descriptions are
in the form of text written by event hosts. We assumed that the descriptions of
formal and informal events would be written in a different way, i.e., using different
sets of vocabularies and writing style. That is to say, the style a description
is written in might give a hint on whether the corresponding event is formal
or informal. In order to classify events based on the descriptions, we use text
analysis and machine learning techniques.

Our initial approach was a binary classification, i.e., the differentiation be-
tween formal or informal events. In order to obtain a training data set, we ran-
domly selected 200 event descriptions and manually annotated them as either
formal or informal. However, we noticed that while some descriptions can be
easily annotated, some are hard to tell. Furthermore, even formal- or informal-
annotated descriptions have a broad range of formality. Therefore, we decided
to use linear regression which predicts the level of being formal rather than bi-
nary classification. We annotated the descriptions in a range of zero to ten, with
zero being the most informal and ten the most formal. During the annotation
process, we wrote down the words from the descriptions that we thought made
the corresponding event formal or informal. We call these two features Formal
or Informal Content Words, which we used for the machine learning process.

According to Sheikha et al., formal and informal texts are highly likely to
be written with different writing styles [5]. They use different vocabularies for
the same contents, as shown in Table 1. Examples for words often used in in-
formal texts are "about", "ask for" and "at once", while formal texts rather use
words like "concerning", "request" and "immediately". Informal texts also use
many contraction words and abbreviation words, while formal texts do not. We
used these six writing style features and two content words features, which we
mentioned above.

Feature Name Example

Informal

Informal Words about, ask for, at once, chance
Contraction Words we’ll, it’d, don’t, can’t, isn’t
Abbreviation Words e.g., Jan., Mon., xmas

Informal Content Words karaoke, board game, casual, romance, love, flirt

Formal

Formal Words concerning, request, immediately, opportunity
Non Contraction Words we will, it would, do not, cannot, is not
Non Abbreviation Words for example, January, Monday, Christmas
Formal Content Words workshop, donation, dress code, seminar, certified

Table 1: A List of Features and Examples for Predicting Formality.

6

Compactness Although Meetup encourages event hosts to make event descrip-
tions concise, many event descriptions are long and contain a lot of not as useful
information. We introduce the concept of compactness, an index of how many
relevant keywords are contained in a given event description. We believe that
the compactness will enable users to understand an event quickly, thus find an
event of interest quickly, especially when there are increasing numbers of events
of similar topics and their descriptions are long.

We decide the compactness of a given event by dividing the number of key-
words by the number of words in the event description. Every word in an event
description has different levels of being relevant to the event topic or what they
actually do in the event. Words are defined as keywords if their relevance exceeds
a certain threshold. To achieve this, we use TF-IDF values for each word in the
event description.

4 Implementation

In order to store the data crawled from Meetup, we used an SAP HANA database
and developed a relational database schema, containing 20 different tables for
the entities we crawled and the relations between them. To use as many of the
available optimizations, we chose to use column table layouts, which allow fast
attribute-wise filtering. The following sections will cover the implementation of
the developed crawler and our calculation and machine learning approaches.

4.1 Crawler

In order to access and interpret the information available on Meetup, we need
to save them to a controlled environment and create an offline data set. The
crawler built to achieve this goal is implemented in Python 2.7 and the following
section will explain its structure and function.

We chose to develop the crawler in Python, because it requires minimal setup
to develop across platforms and to connect to the provided SAP HANA database.
It accesses the available information using the Meetup application programming
interface (API) v2. Most of the data provided can be accessed through this API
version, which provides a RESTful interface with a common JSON response
format. Some nodes are only reachable using the first version of the interface,
which has another response format, but is also supported by our implementation.
For a full list of data nodes that can be accessed and downloaded with the crawler
see Table 2 on the next page. In addition to multiple response formats, some
response fields are only available for organizers of events or groups and therefore
simply not contained in the information sent back from the Meetup server. Other

7

fields have to be explicitly requested, before they are contained. While most of
this is declared in the official API documentation, this information is sometimes
missing.

Furthermore, Meetup reserves the right to throttle or block future access to
the API to ensure equal quality for all customers. If it is detected, that there
are too many requests in a given period of time, the desired response will not be
given and instead be replaced by an HTTP 529 error response, which contains
further information, whether the access is only throttled or blocked for the next
hour.

API Node Board Discussion Discussionpost Event Group Member Profile RSVP
API Version 1 1 1 2 2 2 2 2

Table 2: Supported API nodes and their API version

Architecture In order to follow the separations of concern principle, the crawler
consists of three main components: fetchers, serializers, and persisters. For a
general overview of the architecture of the crawler, see Figure 2 on the facing
page. There is a specific fetcher class for each object to crawl from Meetup.
It knows its API node, what fields have to be manually requested and if and
which additional information has to be sent to the server as well. In the case
of failure, accessing the information is tried multiple times in consideration of
network errors and the throttle/block response codes sent by Meetup.

Unfortunately, not all information for a single class of objects can be ac-
cessed by one call to a corresponding API node, but instead some information
is contained in responses to different other requests. Therefore it is necessary to
prepare and order the data before it can be saved to a relational database.

This step is done by serializers. They get the JSON-response provided by
Meetup and split the information contained according to a relational schema.
For example, sponsors are extracted from group information and then saved in
a separate table in the database, while the relationship between both entities is
conserved using a third table. Each serializer finally produces a set of information
containing the table the data has to be inserted into, the list of attribute values
for each row and a list of identifying attributes and their corresponding values
in order to allow updating existing data sets if the crawler runs multiple times.

This set is then used by a persister to create insert statements for the
database. We built two kinds of persisters: one that creates INSERT-statements
for any database that supports the SQL standard and one that generates SAP
HANA specific UPSERT-statements, which are then saved in a queue, so that it is

8

possible to download information independently of actually inserting it into the
database. The last object in this chain is a thread, that pulls statements from
this queue and uses a database connection to execute them.

The modular structure of the crawler allows it to be adjusted for other
database systems, new API versions of Meetup and additional nodes that have
to be crawled, as only one part has to be switched out, enhanced or modified.

Figure 2: The general architecture of the crawler

Optimizations As most of the runtime of the crawler is produced by waiting for
network traffic (so basically I/O), requesting and downloading the information
from Meetup is executed using multiple threads. It is freely configurable how
many threads should be used, but also limited by two factors.

Firstly, the already mentioned queue is also used to regulate the load that
is produced by the crawler on the executing machine. If there are already more
than 1000 jobs that wait for execution on the database, the fetchers will wait
until the count falls under this threshold once again. This reduces the grade of
independence between crawling and saving, but still leaves some buffer between
producer and consumer.

Secondly, access to the API is monitored and, if necessary, throttled or
blocked by Meetup. Using too many threads quickly leads to the issue of match-
ing or exceeding this artificial border. We expanded our room by using multiple
API-Keys for our requests. This is possible, as throttling is based on the combi-
nation of IP-address and API-Key of the requesting entity. Therefore, increasing
the number of keys also increases the rate in which requests can be sent to the
server without getting blocked.

This is why the insertion into the database is the most time-consuming part.
To improve the speed, the UPSERT-statements are executed as batches instead of
separately.

Finally, the crawling is interruptible and can be continued later on, as an
additional field is saved to the database that indicates whether a group and all
corresponding information has been completely downloaded.

9

4.2 Data Set Characteristics

We collected offline data from multiple cities all over the world. As Meetup is
based in the US, most of its users can be found there. The biggest city world-
wide in terms of Meetup-usage is New York City. It is location to more than
770,000 events, which were attended by more than 800,000 different people. In
Europe, London is the most prominent city with about half as much members.
Additionally interesting to us were German cities. From these, Berlin and Ham-
burg were crawled to compare them to the rest of the world. Some additional
places we crawled, that are not listed in Table 3, are more US-American and
Asian cities.

For the analysis and prediction parts of our work, we chose the city of Chicago
as enclosed data set, as it has many more events than European and Asian cities,
but not as many as New York City. It is also notable, that Chicago-based events
have on average more RSVPs per event than comparably-sized locations.

Another interesting point is the analysis of information given by organizers
and other users. As Table 3 shows, nearly all of the groups listed on Meetup
contain a description. Additional insights into the data show, that these can be
quite extensive, with a maximum length of over 28,000 characters in a Chicago-
based group. This is one of the reasons, we focused two of our five interestingness
features on text analysis. Some of the other user data however has not proven
to be useful. For example, members can link their Meetup accounts to other
social media platforms. As our statistics show, not only have less than 10% of
all users connected to other platforms at all, but also, these connections are to
four different social media sites, making the data even more sparse. Given these
obstacles, we decided against using data about social media connections for the
interestingness features.

Berlin Hamburg London Chicago New York
Members 34671 9122 414290 236255 807560
Groups 752 191 6499 3294 10943
Groups with a description 744 188 6464 3272 10862
Groups with at least one event 638 72 2333 2513 8440
Events 17589 688 63048 236300 770563
Events per group with events 27.57 9.56 27.02 94.03 91.30
Events with at least one RSVP 12860 135 7939 202541 645678
RSVPs per event with RSVPs 14.71 10.87 7.40 9.05 8.76
Percentage of members with at
least one linked social media ac-
count

9.96 8.63 7.58 5.98 6.76

Table 3: Data Set Statistics

10

4.3 RSVP-based features

We implemented the Event Neighborhood concept as part of our Event predic-
tion application. For the half time Thalf a value of two months is used. The
similarity w(i)

s between eupcoming and a past event ei is computed as the Lev-
enshtein distance between the titles of the event, with a minimum value of 0.2.
This rough approximation can be justified by the observation that many groups
on Meetup name many events the same which in turn indicates that they are of
the same type.

Once the Event Neighborhood is computed, we can use it in a straight-
forward manner to compute many of the RSVP-based features. The expected
size of an upcoming event is a direct application of the Event Neighborhood idea
and can be computed as in Equation (1) on page 4.

The trend of an event is computed by doing a weighted regression on the
event sizes of the past events Epast using the Event Neighborhood weights. The
resulting slope quantifies how fast the event is growing or declining. Compared
to doing unweighted regression, this method computes a more short-term trend
(because recent events are weighted higher) and takes different event types into
account (because past events of the same type as eupcoming are weighted higher).

The expected member loyalty is also computed by directly applying the Event
Neighborhood idea to the member loyalty values of past events in Epast. Member
loyalty itself is defined as follows: Let Mi be the set of members that went to
event ei. We define the value commoni,j as the fraction of members that went
to event ei that also went to event ej (see Figure 3 on the following page):

commoni,j :=
|Mi ∩Mj |
|Mi|

(4)

The member loyalty value for event ei is then defined as the weighted average of
all commoni,j values using the Event Neighborhood weights with respect to ei.
Note that since the Event Neighborhood only defines weights for events that are
past relative to the event in question, the member loyalty value of a particular
event ei only depends on events that took place before ei.

4.4 Text-based Features

Formality For predicting formality, we use Spark, a framework that provides
various machine learning algorithms with high-quality, runs fast and is easy to
use. As mentioned in Section 3 on page 3, we use linear regression. This approach
requires a set of training data which consists of a double-typed value for a label

11

1234
common1,4 = 3/3 common1,3 = 1/3 common1,2 = 2/3

M1 = {A, B, C}M2 = {A, C, D}M3 = {C, D, E}M4 = {A, B, C}

time

Figure 3: Illustration of the commoni,j value calculation from Equation (4) on the
preceding page. For instance, common1,3 = |M1∩M3|

|M1|
= |{C}|

|{A,B,C}| =
1
3
.

and a series of double-typed values for the features as shown in Listing 1.1. This
example shows that each data line starts with an annotated value, which in our
case ranges from zero to ten, followed by eight features. Each feature has its
own set of target words, as shown in Section 3 on page 3. We first calculate the
number of occurrences of target words of the given feature appearing in the text.
Then, the feature value is decided by dividing the occurrences by the number of
entire words.

8.0,0.143 0.742 0.424 0.489 0.193 0.495 0.918 0.384
3.0,0.381 0.583 0.934 0.385 0.294 0.583 0.289 0.385
2.0,0.485 0.394 0.729 0.194 0.284 0.193 0.596 0.293
9.0,0.835 0.982 0.193 0.484 0.594 0.293 0.495 0.294

Listing 1.1: An example of training data for predicting Formality

Spark linear regression accepts two arguments, the file path of the training data
and the number of iterations. In general, the higher the number of iterations,
the lower the RMSE. However, there is a certain point where the RMSE practi-
cally does not improve anymore. Moreover, as the number of iterations increases,
training time increases as well. Therefore, in order to find the optimized number
of iterations for our training data set, we ran an experiment of training the data
set with up to 7,000 iterations. As shown in Figure 4 on the facing page, the
RMSE decreases as the number of iterations increases up until approximately
2,000 iterations. The RMSE did not seem to improve after 2,000 and the train-
ing time of approximately one second was acceptable, thus the final number of
iterations was set to 2,000.

With regard to feature combination, we ran an experiment of training the
data set with all possible combinations of eight features, i.e., 255 combinations
without the empty set. As shown in Figure 5 on page 14, the more features, the
lower the RMSE. Interestingly, the combination of seven features out of eight

12

Figure 4: RMSE and training time for the first 7,000 iterations

without Contraction Words gave the lowest RMSE, or 2.57, although there is no
significant difference from the RMSE of the combination of eight features.

The usage example of predicting formality is displayed in Listing 1.2. Firstly,
a training data set and the number of iterations are passed to LinearRegression
to start training. Then, a model is created and LinearRegression predicts the
formality of a given text after converting the text into a series of double-typed
feature values as shown above.

public static void main(String[] args) throws IOException {

/** usage example **/

/** train and save the model **/
LinearRegression.train("data/Formality_Data.data", 2000);
LinearRegression.saveModel("data/model");

/** load the model and predict **/
String description = "This is a test description";
LinearRegression.loadModel("data/model");
double predictedFormality = LinearRegression.predict(description);
System.out.println(predictedFormality);

}

Listing 1.2: Usage example of predicting Formality

13

Figure 5: RMSE per unique combination of features

Compactness In order to obtain compactness of an event description, we first
created a table in the database containing TF-IDF values of every word in all
the event descriptions we crawled. This value is computed with the help of
SAP HANA text analysis tools beforehand. Then, we used a global threshold of
0.2 and iterated over all the event descriptions to decide the compactness of a
corresponding description by dividing the number of words whose TF-IDF value
is above the threshold by the number of words in the description.

4.5 Website Prototype

In order to display all developed filters to users and enable them to use them to
narrow down their search, we built a working website prototype. On this website,
it is possible to enter a topic and select filters and their desired values, as seen
in Figure 6 on the next page. It is a dynamic page that adjusts itself to different
screen sizes and built using the Polymer framework4.

When the user enters a topic or changes the value of a filter-slider, the website
communicates this changes immediately to the web server, which is implemented
using the SAP HANA XS Engine. This was a requirement for integrating our
work into the existing systems of BlogIntelligence5. The webserver takes argu-
ments via HTTP GET requests and generates an SQL statement that can be
executed on the underlying SAP HANA database. It connects to the database
and builds prepared statements in order to prevent SQL injection attacks. After
executing the statements the result is sent back to the JavaScript code of the

4 Polymer. https://www.polymer-project.org
5 BlogIntelligence website. http://blog-intelligence.de

14

website, which modifies the DOM and displays the result. The user interface
shows the top-twenty events for the given filtering conditions.

As requests are sent every time the input changes, there is a continuous data
flow while the user is entering the wanted topic. In consideration of preventing
displaying results for past queries, the server additionally sends back the topic
string for which the request was executed. If the string doesn’t match the text
that is currently entered into the topic field, the response is discarded.

In order to combine multiple features, we calculate the differences between
the values set by the user using the website and the ones predicted for all given
upcoming events. After normalizing the results, they are summed up and the list
of events is ordered in descending order by this rank. This is also the point where
weighting could be introduced in order to allow users to define, which filters are
more important than others (for more information, see section 6 on page 19).

Figure 6: The Meetup Explorer Prototype

15

5 Results

The following section contains evaluations of the Event Neighborhood on the ex-
ample of the event size and for the machine learning approach of the predicted
event formality. The compactness score and other RSVP features are not eval-
uated directly, as they are reference implementations of our definitions. We did
however conduct a small user study to get an idea of how well our approach and
our definitions work. Regarding the execution of a representative user study, see
Section 6 on page 19.

5.1 Event Neighborhood

We evaluated the concept and implementation of the Event Neighborhood by
predicting event sizes for past events in our data set and comparing it with the
actual values. For this, we chose the latest past event from each Meetup Group
in Chicago as the prediction event. It includes a total of 1075 events with an
average size of 10.24 and a standard deviation in size of 19.27.

With optimal parameters, we achieved a RMSE of 8.57. We consider this
error to be sufficiently small in order to get an estimate of what size has to be
expected, especially given the very high variation in the evaluation data set.

In order to verify that the parameters were chosen in an optimal way, we
did the same evaluation using different parameters and variations of the w(i)

equation (see table below).

– Experiment 1: Using Equation (3) and parameters as specified in the imple-
mentation section.

– Experiment 2 / 3: Using a lower / higher value for half time Thalf .
– Experiment 4 / 5: Using only w(i)

t / w(i)
s .

– Experiment 6: Using Equation (3) without the boost.
– Experiment 7: Using the average to combine w(i)

t and w
(i)
s instead of the

product.

As Table 4 on the facing page shows, the parameters we used (Experiment 1)
yield the best results.

5.2 Text-based Features

Based on the optimized set of features and the number of iterations we found
in Section 4.4 on page 11, we split the 200 annotated event descriptions into 10

16

Experiment weight / half time RMSE
1 ws · wt + boost / 2 months 8.56
2 ws · wt + boost / 1 month 8.62
3 ws · wt + boost / 4 months 8.74
4 wt / 2 months 8.83
5 ws / - 10.59
6 ws · wt / 2 months 8.57
7 (ws + wt)/2 + boost / 2 months 10.07

Table 4: Resulting RMSE under different variations and parameter sets of the Event
Neighborhood method.

subsets. Then, we trained using nine subsets, tested the remaining subset and
iterated over all different subsets. We display the result of this ten-fold cross
validation in Figure 7.

Figure 7: RMSE, the number of annotated events of each formality label from 0 to 10
and average RMSE

This graph shows the RMSE value and the number of annotated events of
each formality label from zero to ten. The overall RMSE is approximately 2.57.
As shown in the graph, the RMSE values of the most informal descriptions are
less than the overall RMSE or similar, whereas those of all the formal descriptions
exceed the average. We assume that this was caused by the unbalanced number
of annotated formal and informal event descriptions. Most of the annotated
descriptions were written in an informal style, and therefore our training set
contained only few formal annotated texts. In reality, the majority of Meetup

17

events are informal. Nevertheless, the result implies that there is a significant
difference in using the target words of the features we selected among Meetup
event descriptions and the difference is roughly linear, if not very exactly linear.

We then ran an experiment of training only informal annotated descriptions
in an attempt to see if having a big enough number of annotated events would
give a low RMSE value. The experiment was done in the same way as the ten-fold
cross-validation above. As shown in Figure 8, the overall RMSE has improved
from 2.57 to 1.65. This indicates that it is essential to have many annotated texts
and ideally the same or similar number of formal and informal descriptions.

Figure 8: RMSE, the number of annotated events of each formality label from 0 to 5
and average RMSE

5.3 User Study

In the interest of getting an idea how well our approach works, we conducted a
small user study. The following section will state the results of this study, which
is not to be seen as a representative one. For ideas of how to conclude such a
study, see Section 6 on the facing page.

We altered our website prototype so that users would set their preferred fil-
ters and the website shows either a list of events ranked using their filters or an
unranked list filtered just by the selected topic. It is then possible to switch be-
tween those lists using a color-coded toggle, which enables the person conducting
the study to see, which list is currently displayed, but not the participant. This

18

is necessary in order to prevent the users from being biased (as they know that
the list using the filters is expected to perform better).

As visible in Figure 9, the usage of filters slightly increased the number of
events users would attend. This hints that our approach is valid and able to
improve the search on Meetup.

0	

1	

2	

3	

4	

5	

6	

7	

8	

Pa
r.
cip
an
t	
 0
1	

Pa
r.
cip
an
t	
 0
2	

Pa
r.
cip
an
t	
 0
3	

Pa
r.
cip
an
t	
 0
4	

Pa
r.
cip
an
t	
 0
5	

Pa
r.
cip
an
t	
 0
6	

Pa
r.
cip
an
t	
 0
7	

Pa
r.
cip
an
t	
 0
8	

Pa
r.
cip
an
t	
 0
9	

Pa
r.
cip
an
t	
 1
0	

Interes.ng	
 events	
 without	
 filtering	

Interes.ng	
 events	
 with	
 filtering	

Figure 9: Number of events the participant would attend (out of 10)

6 Conclusion and Future Work

We explored two text-based attributes of events that Meetup currently does not
provide: Formality and Compactness. Formality can give users a hint on overall
characteristics of a given event, as it defines the atmosphere, what is done and
what kind of people come to the event. Using linear regression, we trained on
200 manually annotated Meetup events and can predict the formality with an
error range of 2.57 on a scale from 0 to 10. However, because of the unbalanced
number of formal and informal annotated descriptions in our training set, this
result could be improved. We confirmed this with the subsequent experiment of
training and testing informal descriptions (i.e., events with a formality score of 5
or less) only. The overall RMSE was improved from 2.57 to 1.65. This implies that
the overall RMSE could be even further improved by having a higher number
of annotated descriptions and ideally balancing the number formal and informal
descriptions in the training set. On top of this, we confirmed that there was a
significant difference among Meetup descriptions in using the target words of
each features we selected and the difference was approximately linear, if not

19

perfectly linear. In addition, compactness of a given event was calculated based
on the TF-IDF values of each word in all descriptions of the Meetup events we
crawled. We believe that compactness can help users find an event of interest
quickly and easily among a number of events of the same or similar topic. The
compactness feature could be even further improved by displaying only keywords
or highlighting them.

For the RSVP-based features, we introduced the concept of the Event Neigh-
borhood. This method allows us to estimate features for upcoming events that
are already known for past events, such as the expected size. It works by com-
puting a time weight and a similarity weight for past events of the corresponding
group, which are then used for a weighted average computation. Using this ap-
proach, we achieved a RMSE of 8.56 for the size prediction of the event. This
result could be improved by investigating more sophisticated means to compute
the similarity between events, for which we currently only consider the event
titles.

Finally, we combined these features into a ranking of events. This was used
to build a prototype application, allowing users to adjust the filtering to their
demands. A small user study showed promising results.

Aside of optimizing the existing features, other components could be en-
hanced in future work as well. Even though the crawler can successfully access
and download information for any given city, it is still possible to expand its
functionality. One way to improve it to best match the use case of the Meetup
Explorer is to enable it to save data for whole countries, continents or even the
whole planet. To achieve this, it would be necessary to test the boundaries set
by the Meetup API for accessing large regions instead of single cities. A second
improvement could be an automated incremental crawling for existing data sets
in the database. This would greatly minimize the size of the downloaded block
of information, even though it is currently already possible to set timeframes
and therefore prevent downloading old data again. Currently, crawling and data
mining steps are isolated from each other. However, it would be of interest to
only update event predictions and calculations after new data is inserted into
the data set and only for this new chunk of data, as it would as well greatly
improve the performance.

Additionally, the features developed in this work are only a fraction of the
possible features, as the facets of interestingness are diverse and subjective.
Therefore, many more than the discussed five features are conceivable and, as de-
scribed in [1], more event metadata could be taken into consideration. One could
even think of using Meetup account information as a basis for new features based
on community detection and linked data (see [2] and [3]).

In addition to using more features, it would also be necessary to improve the
website prototype and add features such as ranking the importance of selections

20

or improving the usability of the sliders. Instead of using a linear scale, it would
be better to adapt them to the underlying data, so that users get a visual hint
what to expect when they change the value. While currently all enabled features
are weighted equally, it could also be important to let users of the Meetup
Explorer decide, what is more important to them. This could be done during
the summation step of the differences between prediction and user selection, as
described in Section 4.5. Instead of just summing all normalized values, some
could be multiplied by a factor, giving them more weight in the calculation of
the order of the events. Finally, it would greatly improve the usability to only
show the next event of its kind from a group. To achieve this, it is important to
reliably automatically recognize recurring events and group them together. Our
Event Neighborhood works in a similar way and could be used as a basis to pool
events of a group.

In order to fully evaluate the reference implementations of features like the
description compactness or the event trend and the weighting algorithm on the
website, an extensive user study would be necessary. This study could take place
online with written instructions and a follow-up survey for the participants or
offline. An online survey would provide a wider range of people being able to
take part in the user study, but is also harder to monitor. In both cases the
study could be organized like our small test-study described in Section 5.3 on
page 18.

21

7 Appendix

7.1 Target Words of Each Feature for Predicting Formality

Informal Words a bit, about, absentminded, absorb, abundant, add, advise,
again and again, aim, allot, allow, and, anybody, anyplace, apathy, appeal, ap-
plause, application, approval, around, arty, ask, ask about, ask for, assert, assign,
at first, at once, assume, attribute, authority, avoid, aware, awful, basic, be going
to, beach, beg, beginner, belittle, bellyache, better, big, bigger, bitterness, blab-
bermouth, blame, blessedness, bloody, boozer, boundless, brag, brilliant, bring,
bring up, broad-minded, broke, bug, build, bully, busy, but, buy, cancel, carry,
catch, catch on, cease, chance, change, chat, cheap, check up, chew, childish,
choose, chubby, chump, clean, clear, cleave, climb, clothing, comfort, command,
conceit, concern, conduct, conference, confusion, conscious, consider, console,
control, convert, copy, cowardly, coworker, crony, crowd, cry, cuddle, curse, cute,
dad, daily, deal with, decay, decent, dedicate, delete, delicious, determine, dif-
ficult, digest, diligent, dim, disable, disapproval, disaster, discussion, disease,
disgusting, do, dog, doubt, doubter, douse, dread, drive, drop, drunk, dry, dub,
dumb, dunk, duplicate, earlier, eat, edgy, embarrassement, empty, encourage,
end, endless, enough, erase, everlasting, every year, everybody, everyday, evil,
excuse, explain, facts, fair, fall, famous, farming, farsightedness, fast, fat, feel-
ing, fib, field, filmy, find, fix, flabbergasted, flashy, fleshy, flimsy, foretell, forgive,
fragile, free, fridge, friendly, frisky, funny, gabby, gap, gardening, gather, gener-
ous, get, get out, get smaller, gist, give, give out, glasses, gleaming, go, go down
with, go through, go up, goal, good, goodwill, goof, gourmet, great, greedy, grill,
gripe, grown-up, guess, guy, happiness, hard, harshness, have to, heavy, hefty,
help, helper, high, hint, hire, hoard, hobby, home, house, hug, huge, humanity,
humorous, hurry, illness, imply, important, improve, in charge, in the end, inbred,
incidental, include, indirectness, inhabit, interject, jam, jaundiced, job, jolt, keep,
kid, kind of, kindness, lack, lady, lay back, laziness, learn, learner, learning, leave,
leftover, lessen, let, letter, letup, lighten, like, lit up, live, lively, loaded, loneliness,
lonesome, look up, loud, lucky, lukewarm, mad, mainly, make sure, many, maybe,
mean, means, meant, mend, method, middle, modify, mom, moral, move, mushy,
nab, need, neighboring, next, nice, nitpicking, nobody, nosy, numb, numbskull,
obscure, offer ok, old, older, old-fashioned, on and off, oppose, optimistic, orig-
inate, outcome, outstanding, own, pale, parched, participate, pay, peak, phone,
photo, piddling, pigeonhole, plan, plane, plucky, portion, power, praise, preacher,
premonition, present, pretty much, prize, project, promise, prompt, promptness,
pushy, put up, quick, quit, quotation, raunchy, really, reasoning, rebirth, redun-
dant, relentless, remain, remember, replace, request, resemble, resolution, rest,
rile, ripen, risk, rob, rot, sanction, say no, scanty, scold, seem, send, send back,
sentiment, setup, shameful, sharp, shining, shiv, shock, shorten, show, show up,
sickness, sight, skimpy, slander, slapdash, slushy, small, smooch, snatch, sneaky,
so, sociable, somebody, sort, sort of, so-so, sot, sourness, speech, speed, spread,

22

spud, stab, start, stick, stickup, stint, stipend, stop, story, strong, stuff, sur-
round, swamp, swap, sweat, swing, tactful, take on, takeoff, tasty, teach, tell,
thing, think, timeless, times, tip, tired, tomb, too, totally, touching, trim, trip,
truthful, try, tune, unchangeable, understanding, unhappy, unruly, unselfishness,
upset, uptight, use, various, very, want, watch, wealthy, whole, willing, wisecrack,
wordy, workable, worry, worse, wrong, yardstick

Formal Words a little, approximately, concerning, abstracted, ingest, copious,
affix, counsel, repeatedly, intend, allocate, permit, furthermore, in addition, any-
one, anywhere, anomie, petition, acclamation, requisition, commendation, man-
nered, enquire, request, aver, designate, postulate, initially, immediately, char-
acteristic, jurisdiction, eschew, cognizant, ill, fundamental, will, littoral, plead,
novice, minimize, whine, superior, ameliorate, major, large, greater, acerbity,
informer, reprehension, beatitude, sanguinary, drunkard, illimitable, vaunt, re-
splendent, convey, vomit, complaisant, insolvent, exasperate, construct, terrorize,
occupied, however, purchase, eradicate, transport, apprehend, understand, de-
sist, opportunity, transform, alter, dialogue, inexpensive, investigate, masticate,
immature, select, portly, fool, immaculate, transparent, unmistakable, sunder,
ascend, apparel, condole, directive, vanity, solicitude, deportment, assembly, dis-
array, mindful, deem, solace, govern, transmute, replica, craven, associate, friend,
throng, wail, fondle, anathema, pretty, father, diurnal, handle, decompose, eth-
ical, consecrate, expunge, flavorful, ascertain, arduous, imbibe, assiduous, indis-
tinct, incapacitate, aspersion, calamity, colloquy, malady, repugnant, perform,
hound, dubiety, skeptic, submerge, foreboding, impel, decline, intoxicated, des-
iccated, obtuse, immerse, facsimile, previous, dine, restless, discomposure, va-
cant, gladden, finish, unending, sufficient, efface, annually, everyone, quotidian,
nefarious, remit, elucidate, data, disinterested, decrease, renowned, agriculture,
prescience, swift, corpulent, emotion, lie, specialization, diaphanous, locate, dis-
cover, rectify, astounded, gaudy, mesomorphic, unsubstantial, augur, pardon,
frangible, release, exempt, refrigerator, amiable, sportive, comic, talkative, aper-
ture, tillage, convene, magnanimous, obtain, acquire, leave, crux, donate, con-
tribute, distribute, spectacles, luminous, depart, contract, increase, objective,
beneficial, generosity, mistake, gastronome, reputable, avaricious, interrogate,
complain, adult, believe, man, felicity, laborious, acrimony, must, burdensome,
ponderous, assist, assistant, elevated, insinuation, employ, preserve, avocation,
residence, dwelling, caress, enormous, humankind, jocular, expedite, infirmity,
connote, consequential, responsible, finally, innate, adventitious, comprise, cir-
cumlocution, reside, interpose, cynical, occupation, impact, retain, child, some-
what, benevolence, deficiency, woman, relax, indolence, detect, scholar, pedantry,
residue, allay, authorize, correspondence, respite, alleviate, such as, illuminate,
energetic, prosperous, disaffection, lonely, research, clamorous, fortunate, tepid,
insane, principally, ensure, numerous, possibly, perhaps, in other words, instru-
mentality, denote, repair, procedure, midst, mother, virtuous, transfer, maudlin,
arrest, require, contiguous, subsequently, agreeable, pedantic no one, prying,

23

anesthetized, dullard, arcane, proffer, satisfactory, aged, senior, archaic, inter-
mittently, gainsay, sanguine, emanate, denouement, paramount, possess, wan,
dehydrated, partake, compensation, summit, telephone, photograph, negligible,
categorize, scheme, aeroplane, valiant, passage, sway, laud, minister, presenti-
ment, gift, essentially, award, undertaking, assure, motivate, alacrity, ambitious,
manage, rapid, resign, quote, risque, quite, ratiocination, renaissance, pleonastic,
inexorable, abide, recall, supersede, appeal, parallel, fortitude, repose, annoy, ma-
ture, jeopardy, extort, spoil, approbation, reject, exiguous, chide, appear, trans-
mit, return, affect, dishonorable, acute, effulgent, knife, reduce, demonstrate,
evince, ailment, vision, meager, cursory, mawkish, diminutive, kiss, seize, under-
hand, therefore, consequently, social, someone, type, rather, mediocre, alcoholic,
asperity, oration, velocity, propagate, potato, penetrate, begin, adhere, larceny,
assignment, emolument, cease, halt, narrative, stalwart, materials, things, items,
circumscribe, deluge, barter, perspiration, oscillate, diplomatic, mimicry, palat-
able, educate, inform, recount, matter, issue, cogitate, eternal, multiply, gratu-
ity, fatigued, sepulcher, also, completely, poignant, ornament, voyage, veracious,
endeavour, song, immutable, comprehension, dissatisfied, intractable, altruism,
disturb, nervous, consume, sundry, highly, desire, wish, observe, affluent, com-
plete, entire, compliant, joke, verbose, feasible, apprehension, inferior, incorrect,
criterion

ContractionWords ain’t, aren’t, can’t, couldn’t, didn’t, doesn’t, don’t, hadn’t,
hasn’t, haven’t, he’d, he’ll, he’s, i’d, i’ll, i’m, i’ve, isn’t, let’s, mightn’t, mustn’t,
shan’t, she’d, she’ll, she’s, shouldn’t, that’s, there’s, they’d, they’ll, they’re,
they’ve, we’d, we’re, we’ve, weren’t, what’u, what’ll, what’re, what’s, what’ve,
where’s, who’s, who’ll, who’re, who’ve, won’t, wouldn’t, would’ve, you’d, you’ll,
you’re, you’ve, that’ll, it’s, we’ll, it’d

Non Contraction Words am not, are not, cannot, could not, did not, does
not, do not, had not, has not, have not, he had, he would, he shall, he will, he
is, he has, i would, i had, i shall, i will, i am, i have, is not, let us, might not,
must not, shall not, she had, she would, she will, she shall, she is, she has, should
not, that is, that has, there is, there has, they would, they had, they will, they
shall, they are, they have, we would, we had, we are, we have, were not, what
shall, what will, what are, what is, what has, what have, where has, where is,
who had, who would, who will, who shall, who are, who has, who is, who have,
will not, would not, would have, you had, you would, you will, you shall, you
are, you have, that will, it is, we will, we shall, it would, it had

Abbreviation Words e.g., i.e., etc., ok, jan., feb., mar., apr., may., jun., jul.,
aug., sep., oct., nov., dec., sat., sun., mon., tue., wed., thu., fri., plane, lab., asap,
usa, tons, undergrad., grad., hr, prof., ai, ur, &, abt, mt, mt., shd, shd., wch,

24

wd, wd., wh, wh., yr, yr., yrs, yrs., 2d, 2n, 3d, acct, acct., advt, aftern, aftern.,
aftn, aftn., am, a m, anti-cathc., arc., ass., b.m., bkfst, bkfst., brkfst, c.b.e., cent,
chap, chap., chaps, depart., edn, eng., h.oflds, hist., hrs., in., ld., ldy, ldy., lovg,
ly, ly., max., mem., min., min:, phys., prob., recvd, secty., temp., trans., univ.,
vol., xmas, xtian, yestdy, acad., adm., bib.

Non Abbreviation Words for example, that is, and so on, okay, january,
february, march, april, may, june, july, august, september, october, november,
december, saturday, sunday, monday, tuesday, wednesday, thursday, friday, air-
plane, laboratory, as soon as possible, united states of america, tonnes, under-
graduate, graduate, human resources, professor, artificial intelligence, your, and,
about, might, should, which, would, yours, second, third, account, advertise-
ment, afternoon, ante meridiem, anti-catholic, archaeological, association, british
museum, breakfast, commander of the order, century, chapter, chapters, depart-
ment, edition, english, house of lords, history, hours, inches, lord, lady, loving,
maximum, memoires, minutes, physical, probably, received, secretary, tempera-
ture, to equal, transactions, university, volume, christmas, christian, yesterday,
years, academic, administration, bible

Informal Content Words karaoke, eating, fun, board game, game, mcdonalds,
hangout, no location, player, casual, picnic, laugh, enjoy, movie, run, runner,
jazz, free hug, single, dance, skate park, dancer, salsa, comedy, chat, skydiving,
hanging out, beach, party, atmosphere, hey, flirt, nightlife, romance, friendship,
friend, !!, let’s, tons of, groove, club, hikes, share in the moment, all you can
eat, entertainer, a dime, thanx, :-), lover, valentine’s day, love, dating, nuts, ?!,
dreamer, knitting, comfy, awesome

Formal Content Words socialising, workshop, registration, payment, fee,
charge, business, donation, donate, admission, museum, coach, schedule, street
action, discuss, ticket, dress code, entrepreneur, badge, session, course, insight,
instruction, program, technique, seminar, scripture, dress, intelligent, attire, con-
structive feedback, business card, presentation, class, teacher, technically, ap-
proval, political, lecture, demonstration, leader, professional, development, ser-
vices are led, bible, guideline, certified, program

25

References

1. A. Q. de Macedo and L. B. Marinho. Event recommendation in event-based social
networks.

2. X.-L. Li, A. Tan, S. Y. Philip, and S.-K. Ng. Ecode: event-based community detec-
tion from social networks. In Database Systems for Advanced Applications, pages
22–37. Springer, 2011.

3. X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and J. Han. Event-based social
networks: linking the online and offline social worlds. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 1032–1040. ACM, 2012.

4. Meetup. Meetup about page. http://www.meetup.com/about/, Feb. 2015. [Accessed
19.02.2015].

5. F. A. Sheikha and D. Inkpen. Learning to classify documents according to formal
and informal style, Mar. 2012.

6. B. Xu, A. Chin, and D. Cosley. On how event size and interactivity affect social
networks. In CHI’13 Extended Abstracts on Human Factors in Computing Systems,
pages 865–870. ACM, 2013.

26

